jueves, 10 de octubre de 2013

redes


nombre: adrian jose rosario f.                  mmatricula: 12-eisn-1-154



redes:

La red informática nombra al conjunto de computadoras y otros equipos interconectados, que comparten información, recursos y servicios. Puede a su vez dividirse en diversas categorías, según su alcance (red de área local o LAN, red de área metropolitana o MAN, red de área amplia o WAN, etc.), su método de conexión (por cable coaxial, fibra óptica, radio, microondas, infrarrojos) o su relación funcional (cliente-servidor, persona a persona), entre otras.
La red eléctrica, por su parte, es aquella conformada por generadores eléctricostransformadoreslíneas de transmisión y líneas de distribución, que se encargan de llevar la electricidad a los usuarios residenciales. El sistema utiliza diferentes tensiones, donde las más altas se utilizan en las distancias más largas, mientras que las tensiones se van reduciendo a medida que la energía se acerca a las instalaciones del usuario.

En cuanto a la red social, el concepto se refiere a aquella estructura donde diversos individuos mantienen distintos tipos de relaciones (de amistad, comerciales, sexuales, etc.).
La red social ha actualizado su significado en los últimos años, ya que comenzó a utilizarse el término para definir a los sitios de Internet que promueven las comunidades virtuales de acuerdo a intereses. MySpace y Facebook son dos de estas redes sociales que reúnen a millones de usuarios, quienes pueden intercambiar mensajes y archivos con otros miembros de la red.

LAS REDES Y LOS SISTEMAS DISTRIBUIDOS


Las primeras redes de computadoras fueron diseñadas para satisfacer los requisitos de aplicación del tipo transferencia de archivos, conexión a sistemas remotos, correo electrónico y servicios de noticias.
Con el crecimiento y comercialización de Internet se han impuestos requisitos más exigentes en cuanto a:


PRESTACIONES: los parámetros indicadores de las prestaciones son aquellos que afectan a la velocidad con la que los mensajes individuales pueden ser transferidos entre dos computadores interconectados. Estos son:

-La Latencia: Es el intervalo de tiempo que ocurre entre la ejecución de la operación de envío y en instante en que los datos comienzan a estar disponibles en el destino.

-La Taza de Transferencia de Datos: es la velocidad a la cual se pueden transferir datos entre dos computadores conectados a la red. La transmisión, una vez ya inicializada es medida en bits por segundos.
Tiempo requerido por una red para la transmisión de un mensaje de 1 bits de longitud entre dos computadores es:

Tiempo de transmisión del mensaje = Latencia + Longitud/Tasa de transferencia.

Esta ecuación es válida para mensajes cuya longitud no supere un máximo que viene determinado por la tecnología de la red subyacentes. Para mensajes más largos se los segmenta y el tiempo de transmisión es igual a la suma del tiempo de transmisión de cada segmento.
La tasa de transferencia de una red viene determinada por sus características físicas y la latencia estará determinada por las sobrecargas del software, los retrasos en el encaminamiento y una componente estadística derivada de los conflictos en el uso de los canales de transmisión.
El ancho de banda total b del sistema de una red es una medida de la productividad (throughput), del volumen de tráfico que puede ser transferido a través de la red en un intervalo de tiempo dado. En muchas tecnologías de red local, se utiliza toda la capacidad de transmisión de la red en cada transmisión y el ancho de banda es igual a la tasa de transferencia. Sin embargo, en la mayoría de las redes de área extensa los mensajes pueden ser transferidos simultáneamente sobre varios canales diferentes de modo que el ancho de la banda no guarda relación directa con la tasa de transferencia.

ESCABILIDAD: al hablar de la infraestructura de la sociedad debemos pensar en las redes de computadores puesto que estas son una parte de ella. El tamaño futuro de Internet será comparable con la población del planeta. Resulta creíble esperar que alcance varios de miles de millones de nodos y cientos de millones de hots activos.
Las tecnologías de red sobre que se asientan no están diseñadas incluso ni para soportar la escala de algunos cambios sustanciales para el direccionamiento y los mecanismos de encaminamiento, con el fin de dar soporte a la siguiente fase de crecimiento de Internet.
No se dispone de cifras globales sobre el tráfico en Internet, pero se puede estimar el impacto de las prestaciones a partir de las latencias. La capacidad de la infraestructura en Internet para vérselas en este crecimiento dependerá de la economía de utilización, en particular las cargas sobre usuarios y los patrones de comunicación que sedan actualmente.

FIABILIDAD: en la mayoría, los medios de transmisión son muy altos. Cuando ocurren errores son normalmente debidos a fallos de sincronización en el software en el emisor o en el receptor, o desbordamientos en el buffer mas que fallos en la red.

SEGURIDAD: la mayoría de las organizaciones protegen en sus redes y computadores a ellos conectados a través de unos cortafuegos (firewall. Este creo un límite de protección entre la red interna de la organización o intranet, y el resto de Internet. Su propósito es proteger los recursos en todos los computadores dentro de la organización del acceso por parte de usuarios o procesos externos, y controlar el uso de recursos del otro lado del cortafuego por parte de los usuarios dentro de la organización.
Un cortafuegos se ejecuta sobre un gateway o pasarela, un computador que se coloca en el punto de entrada de la red interna de una organización. El cortafuego recibe y filtra todos los mensajes que viajan desde y hacia la organización. Está configurado de acuerdo con políticas de seguridad de la organización para permitir que ciertos mensajes entrantes o salientes pasen a través de él, y para rechazar los demás.
Para que las aplicaciones distribuidas se puedan mover más allá de las restricciones impuestas por el cortafuegos existe la necesidad de producir un entorno seguro de red en el cual pueda diseminarse un gran número de aplicaciones distribuidas, con autenticación extremo a extremo, privacidad y seguridad. Esta forma de seguridad puede ser conseguida mediante técnica de criptografías.

MOVILIDAD: Los dispositivos móviles se desplazan frecuentemente entre distintos lugares y se adhieren en puntos de conexión variados. Los modos de direccionamiento y encaminamiento de Internet y de otras redes, fueron desarrolladas antes de la llegada de los dispositivos móviles, y aunque los mecanismos actuales han sido adoptados y extendidos para soportar cierta movilidad, el esperado crecimiento del uso de los dispositivos móviles hará necesarias nuevas extensiones.

CALIDAD DE SEVICIO: es la capacidad de cumplir con las restricciones temporales cuando se transmiten y se procesan flujos de datos multimedia en tiempo real. Pero, en cuanto a las redes de computadoras esta impone unas condiciones más importantes. Las aplicaciones que transmiten datos multimedia requieren tener garantizados uno ancho de banda y unos limites de latencia en los canales que utiliza. Algunas aplicaciones varían sus demandas dinámicamente, y especifican tanto la calidad de servicios aceptable mínimo como la óptima deseada.

MULTIDIFUCIÓN (Multicasting): La comunicación de uno a muchos puede ser simulada enviando mensajes a varios destinos, pero resulta más costoso de lo necesario y no posee las características de tolerancia a fallos requeridos por las aplicaciones. Por estas razones, muchas tecnologías de la red soportan la transmisión simultánea de mensajes a varios receptores.

 

 

TIPOS DE REDES

Principales tipos de redes para soportar los sistemas distribuidos son:

REDES DE ÁREA LOCAL: las redes de área local (local area networks ) llevan mensajes a velocidades relativamente grande entre computadores conectados a un único medio de comunicaciones : un cable de par trenzado. Un cable coaxial o una fibra óptica. Un segmento es una sección de cable que da servicio y que puede tener varios computadores conectados, el ancho de banda del mismo se reparte entre dichas computadores. Las redes de área local mayores están compuestas por varios segmentos interconectados por conmutadores(switches) o concentradores(hubs. El ancho de banda total del sistema es grande y la latencia pequeña, salvo cuando el tráfico es muy alto.
En los años 70s se han desarrollado varias tecnologías de redes de área local, destacándose Ethernet como tecnología dominante para las redes de área amplia; estando esta carente de garantías necesarias sobre latencia y ancho de banda necesario para la aplicación multimedia. Como consecuencia de esta surge ATM para cubrir estas falencias impidiendo su costo su implementación en redes de área local. Entonces en su lugar se implementan las redes Ethernet de alta velocidad que resuelven estas limitaciones no superando la eficiencia de ATM.

REDES DE ÁREA EXTENSA: estas pueden llevar mensajes entre nodos que están a menudo en diferentes organizaciones y quizás separadas por grandes distancias, pero a una velocidad menor que las redes LAN. El medio de comunicación esta compuesto por un conjunto de círculos de enlazadas mediante computadores dedicados, llamados rotures o encaminadores. Esto gestiona la red de comunicaciones y encaminan mensajes o paquetes hacia su destino. En la mayoría de las redes se produce un retardo en cada punto de la ruta a causa de las operaciones de encaminamiento, por lo que la latencia total de la transmisión de un mensaje depende de la ruta seguida y de la carga de trafico en los distintos segmentos que atraviese. La velocidad de las señales electrónicas en la mayoría de los medios es cercana a la velocidad de la luz, y esto impone un límite inferior a la latencia de las transmisiones para las transmisiones de larga distancia.

REDES DE ÁREA METROPOLITANA: las redes de área metropolitana (metropolitan area networks)se basan en el gran ancho de banda de las cableadas de cobre y fibra óptica recientemente instalados para la transmisión de videos, voz, y otro tipo de datos. Varias han sido las tecnologías utilizadas para implementar el encaminamiento en las redes LAN, desde Ethernet hasta ATM. IEEE ha publicado la especificación 802.6[IEEE 1994], diseñado expresamente para satisfacer las necesidades de las redes WAN. Las conexiones de línea de suscripción digital ,DLS( digital subscribe line) y los MODEM de cable son un ejemplo de esto. DSL utiliza generalmente conmutadores digitales sobre par trenzado a velocidades entre 0.25 y 6.0 Mbps; la utilización de este par trenzado para las conexiones limita la distancia al conmutador a 1.5 kilómetros . una conexión de MODEM  por cable utiliza una señalización análoga sobre el cable coaxil de televisión para conseguir velocidades de 1.5 Mbps con un alcance superior que DSL.

REDES INALÁMBRICAS: la conexión de los dispositivos portátiles y de mano necesitan redes de comunicaciones inalámbricas(wireless networks). Algunos de ellos son la IEEE802.11(wave lan) son verdaderas redes LAN inalámbricas (wireless local área  networks;WLAN) diseñados para ser utilizados en vez de los LAN . También se encuentran las redes de area personal inalámbricas, incluida la red europea mediante el Sistema Global para Comunicaciones Moviles, GSM( global system for mobile communication). En los Estados Unidos , la mayoría de los teléfonos móviles están  actualmente basados en la análoga red de radio celular AMPS, sobre la cual se encuentra la red digital de comunicaciones de Paquetes de Datos Digitales Celular, CDPD( Cellular Digital Packet Data).
Dado el restringido ancho de banda disponible y las otras limitaciones de los conjuntos de protocolos  llamados Protocolos de Aplicación  Inalámbrica WAP(Wireless Aplication Protocol)      



INTERREDES: una Interred es un sistema de comunicación compuesto por varias redes que se han enlazado juntas para proporcionar unas posibilidades de comunicación ocultando las tecnologías y los protocolos y métodos de interconexión de las redes individuales que la componen.
Estas son necesarias para el desarrollo de sistemas distribuidos abiertos extensibles. En ellas se puede integrar una gran variedad de tecnología de redes de área local y amplia, para proporcionar la capacidad de trabajo en red necesaria para cada grupo de usuario. Así, las intercedes aportan gran parte de los beneficios de los sistemas abiertos a las comunicaciones de los sistemas distribuidos.
Las intercedes se construyen a partir de varias redes. Estas están interconectadas por computadoras dedicadas llamadas routers y computadores de propósito general llamadas gateways, y por un subsistema integrado de comunicaciones producidos por una capa de software que soporta el direccionamiento y la transmisión de datos a los computadores a través de la interred. Los resultados pueden contemplarse como una red virtual construida a partir de solapar una capa de interred sobre un medio de comunicación que consiste en varias redes, routers y gateways subyacentes.

COMPORACION DE REDES: en las redes inalámbricas los paquetes se pierden con frecuencia debido a las interferencias externas, en cambio, en el resto de los tipos de redes la fiabilidad de los mecanismos de transmisión es muy alta. En todos los tipos de redes las perdidas de paquetes son como consecuencia de los retardos de procesamiento o por los desbordamientos en los destinos.
Los paquetes pueden entregarse en diferente orden al que fueron transmitidos. También se pueden entregar copias duplicadas de paquetes, tanto la retransmisión del paquete como el original llegan a su destino.
Todos los fallos descriptos son ocultados por TCP y por otros protocolos llamados protocolos fiables, que hacen posible que las aplicaciones supongan que todo lo que es transmitido será recibido por destinatario. Existen, sin embargo, buenas razones para utilizar protocolos menos fiables como UDP en algunos casos de sistemas distribuidos, y en aquellas circunstancias en las que los programas de aplicación puedan tolerar los fallos.





Rango
Ancho de Banda
Latencia (ms)


LAN
WAN
MAN
LAN inalámbrica
WAN inálambrica
Internet
1-2 km.
Mundial
2-50 km
0,15-1,5 km
mundia
mundial
10-1.000
0.010-600
1-150
2-11
0.010-2
0.010-2
1-10
100-500
10
5-20
100-500
100-500


Tipos de Redes

FUNDAMENTOS DE REDES


En las redes se necesita transmitir unidades de información o mensajes: secuencias de items de datos de longitudes arbitrarias. Se divide el mensaje en paquetes antes de ser transmitido. La forma más sencilla de éstos es una secuencia de datos binarios (secuencias de bits o bytes), de una longitud determinada acompañada con información para identificar los computadores origen y destino. Los paquetes deben tener una longitud limitada:
§         De esta manera se puede reservar el espacio de almacenamiento para el almacenamiento de un paquete más largo que pudría llegar a recibirse.
§         Para evitar retardos que podrían ocurrir si se estuviera esperando a que los canales esten libres el tiempo suficiente para enviar un mensaje largo sin dividir.

Las bases de redes de computadores es la técnica de conmutación de paquetes en el cuál se aprovecha la capacidad de almacenar información mientras está en transito. Esto posibilita que paquetes con diferentes destinos compartan un mismo enlace de comunicaciones. Se colocan en cola en bufer y se transmiten cuando el enlace está disponible la comunicación es asíncrona, ya que los mensajes llegan a su destino después de un retardo variable que depende del tiempo que tardaron los paquetes en viajar a través de la red. Una red se compone de un conjunto de nodos conectados a través de circuitos.  Para transmitir información entre dos nodos cualquiera se necesita un sistema de conmutación.

LOS CUATRO TIPOS DE CONMUTACIÓN SON:
*DIFUSIÓN (broadcast): técnica de transmisión que no involucra cambio alguno. La información es transmitida a todos los nodos y depende de los receptores decidir si el mensaje va dirigido a ellos o no .
*CONMUTACIÓN DE CIRCUITOS: el sistema telefónico plano antiguo es un típico ejemplo de éste tipo de red. Cuando el emisor marca un número, el par de hilos de cobre que lleva desde su teléfono  hasta la centralita es conectado automáticamente al par que va al teléfono receptor.
*CONMUTACIÓN DE  PAQUETES: el tipo de redes de comunicaciones de almacenamiento y reevío (store-and-forward network), envía paquetes desde el origen hacia el destino.  En cada nodo de cambio se encuentra un  computador (halla donde varios circuitos se conectan). Los paquetes que llegan a un nodo se almacenan en la memoria del computador de ese nodo y luego son procesados por un programa que les envía hacia su destino eligiendo uno de los circuitos salientes que llevará al paquetes a otro nodo que estará más cerca del destino que el nodo anterior.
   La transmisión no es instantánea, toma pocas decenas de microsegundas hasta pocos milisegundos para encaminar los paquetes en cada nodo de la red, dependiendo del tamaño del paquete, velocidad de hardware y cantidad de tráfico. Los paquetes pueden ser encaminados hacia muchos nodos antes de que alcance su destino..Los retardos son acumulativos.
*FRAME RELAY(o retransmisión de marcos):este tipo aporta algunas ventajas de la conmutación de circuitos a la conmutación de paquetes.
  Se solucionó el problema de retardo al conmutador, los paquetes pequeños (marcos, frames), según venían al vuelo. Los nodos de conmutación (usualmente son procesadores paralelos de propósitos específico, encaminan los marcos basándose en el examen de los primeros bits, los marcos pasan a través de él como pequeños flujos de bits.

PROTOCOLOS
Los protocolos de comunicación son grupos de reglas que definen los procedimientos convenciones y métodos utilizados para transmitir datos entre dos o más dispositivos conectados a la red. La definición tiene dos partes importantes:
*Una especificación de las secuencias de mensajes que se han de intercambiar.
*Una especificación del formato de los datos en los mensajes.
La existencia de protocolos posibilita que los componentes software separados pueden desarrollarse independientemente e implementarse en diferentes lenguajes de programación sobre computadores que quizás tengan diferentes representaciones internas de datos.
Un protocolo está implementado por dos módulos software ubicados en el emisor y el receptor. Un proceso transmitirá un mensajes a otro efectuando una llamada al módulo pasándole el mensaje en cierto formato. Se transmitirá el mensaje a su destino, dividiéndolo en paquetes de tamaño y formato determinado. Una vez  recibido el paquete de su módulo realiza transformaciones inversas para regenerar el mensaje antes de dárselo al proceso receptor.

PROTOCOLOS A CAPAS: el software de red está jerarquizado en capas, cada una presenta una interfaz a las capas sobre ellas que extiende las propiedades del sistema subyacente. Cada capa se representa por un módulo en cada uno de los computadores conectados a la red.




   En éste gráfico se ilustra la estructura y el flujo de datos cuando se transmite un mensajes utilizando la pila de protocolos.
   Cada capa de software de red se comunica con los protocolos que están por encima y por debajo de él mediante llamadas a procedimientos.
    En el lado emisor, cada capa (excepto la superior) acepta items de datos en un formato específico de la capa superior, y después de procesarlos los transforma para encapsularlos según el formato especificado por la capa inferior a la que se los pasa para  su  procesamiento. De este modo cada capa proporciona un servicio a la capa superior y extiende el servicio proporcionado por la capa inferior.

CONJUNTOS DE PROTOCOLOS: al conjunto completo de capas de protocolos se las denomina como conjunto de protocolos o pila de protocolos, plasmando con ello la estructura de capas.


   En éste gráfico muestra la pila de protocolos del Modelo de Referencias para Interconexión de Sistemas Abiertos (Open System Interconnection, OSI). Este es un marco de trabajo para la definición de protocolos adoptados para favorecer el desarrollo de estándares de protocolos que pudieran satisfacer los requisitos de sistemas abiertos .

Los protocolos por capas proporcionan beneficios al simplificar y generalizar las interfases software para el acceso a los servicios de comunicación de las redes, además implica grandes costos en prestaciones.
   La transmisión de un mensaje de la capa de aplicación vía la pila de protocolos con N capas que involucra N transferencias de control a las capas relevantes en la pila, una de las cuales es una entrada del sistema operativo, y realiza N copias de los datos como parte del mecanismo de encapsulación.


ENSAMBLADO DE PAQUETES: La tarea de dividir los mensajes en paquetes antes de la transmisión y reensamblarlos en el computador destino se realiza en la capa de transporte.
  Los paquetes de protocolo de la capa de red  están compuestos una  cabecera y por un campo de datos. El campo de datos es de longitud variable, pero tiene un límite llamado unidad máxima de transferencia (MTU).
  Si la longitud del mensaje excede la MTU de la capa de red, debe ser fragmentado en trozos de tamaño apropiado, y debe ser identificado con una secuencia de números para utilizarla en el reensamblado y transmitido en múltiples paquetes.
PUERTOS: la tarea de la capa de transporte es la de proporcionar un servicio de transporte de mensajes independientes de la red entre pares de puertos de red. Los puertos son puntos de destino para la comunicación dentro de un computador definidos por software. Además se asocian a procesos permitiendo la comunicación de un proceso con otro.
DIRECCIONAMIENTO: la capa de transporte es responsable de la entrega de mensajes al destino utilizando una dirección de transporte, que consta de la dirección de red de un computador y de un número de puerto.
  Una dirección de red es un identificador numérico que reconoce de forma única aun computador  y posibilita su localización por parte de los nodos responsables del encadenamiento de los datos.
ENTREGA DE PAQUETES: existen dos aproximaciones a  la hora de entregar paquetes por parte de la capa de red:
Entrega de paquetes tipo datagrama: las características esenciales de los datagrama de red es que la entrega de capa paquete es un proceso de un paso: no requiere ninguna preparación y una vez que el paquete ha sido entregado, la red no guarda información sobre él. Cada miembro de la secuencia de paquetes transmitidos por un  host a  un destino puede seguir rutas diferentes y talvez lleguen desordenados.
  Cada datagrama contiene la dirección de red completa  delos host origen y destino (las última es esencial para el proceso de encaminamiento) .
Entrega de paquetes por circuito virtual: se debe conseguir un circuito virtual antes de que los paquetes puedan  pasar del  host  origen A al host destino B. El establecimiento del circuito virtual involucra la identificación de las rutas desde el origen al destino. En cada  nodo a lo largo de la ruta se crea una entrada en la tabla de encaminamiento, indicando que enlace debe ser utilizado para la siguiente etapa de la ruta . Una vez configurado el circuitos virtual  puede ser utilizado para transmitir cualquier  número de paquetes.  Cada paquete de la capa de red contiene solo el número de circuito virtual, que es lo que lo encamina en los nodos intermedios, ya cuando alcanzó su destino,  el origen  es determinado a partir de éste número.
  En la entrega de paquetes por éste medio están  representados los circuitos solo por entradas a tablas de los nodos de encaminamiento, y los enlaces sobre los que fueron encaminados los paquetes se utilizan en el tiempo necesario para que el paquete sea transmitido (estando disponible para ser utilizado por otros usuarios el resto del tiempo). Un enlace puede ser empleado por varios circuitos virtuales distintos.  

ENCAMINAMIENTO
  Es una función necesaria en todas las redes excepto en aquellas redes LAN que proporcionan conexiones directas entre todos los pares de hosts conectados. En las redes grandes se emplea un encaminamiento adaptativo: se reevalúan periódicamente las mejores rutas para comunicar los puntos de red, teniendo en cuenta el tráfico actual y cualquier fallo como conexiones rotas o ronters caidos.


La entrega de los paquetes a sus destinos es una  responsabilidad colectiva de los routers situados en los puntos de conexión El paquete deberá ser transmitido en una serie de saltos, pasando a través de los routers. La determinación de las rutas a seguir para que   un paquete llegue a destino es responsabilidad del algoritmo de encaminamiento por un programa en la capa de red de cada nodo.
Un algoritmo de encaminamiento tiene dos partes:
&Tomar decisiones que determinen la ruta seguida por cada paquete  que viajan por la red.
&Debe actualizar dinámicamente su conocimiento de la red basándose en la monotorización  del  tráfico y la detección de cambios de configuración o de fallos .
  Las decisiones de encaminamiento  se toma  salto a salto, utilizando información  local para determinar el siguiente salto a dar por el paquete recién llegado.  La información almacenada localmente es actualizada periódicamente por un algoritmo que distribuye información sobre el estado de los enlaces ( su carga  y sus estados de error ).





  En este gráfico se puede observar  tablas de encaminamiento que se deben almacenar en cada  routers de la red (suponiendo que la red no tenga ni enlaces ni routers caídos). Cada fila tiene la información de encaminamiento relevante para los paquetes dirigidos a cierto destino. El campo enlace espacifica el enlace de salida para los paquetes dirigidos a cada destino. Las tablas de encaminamiento contienen una entrada por cada posible destino, donde se muestra el siguiente salto que va  hacer para llegar al destino final. Cuando un paquete llega a un routers , se saca su dirección destino y se busca en la tabla . La entrada resultante identifica el enlace de salida que tiene que ser utilizado para encaminar el paquete al destino .
  Los algoritmo de encaminamiento se han orientado hacia el incremento de la cantidad de conocimientos  de la red que se almacena en cada nodo. El mas importante es el algoritmo de estado de enlace que se basa en la distribución y actualización de una base de dato en cada nodo que representa la totalidad o una porción substancial de la red. Cada nodo es responsable de calcular las rutas óptimas para los destinos incluidos en su base de datos.

CONTROL DE LA CONGESTIÓN.
La capacidad de la red esta limitada por las prestaciones de sus enlaces de comunicación y por los nodos de conmutación. Con la carga en un enlace o en un nodo se acerca a su capacidad máxima, se forman colas con los mensajes que los hosts están intentando  enviar y en los nodos intermedios se almacenan las trasmisiones que no se pueden realizar al estar bloqueadas por el trafico.
Si la carga continua en el mismo nivel alto las colas seguirán creciendo hasta alcanzar el limite de espacio disponible en cada búfer. Una vez que un nodo alcanza este estado, no tiene otra opción que desechar los paquetes que le llega (la perdida ocasional de paquetes en el nivel de red es aceptable y puede ser remediada mediante retransmisiones el los niveles superiores). La taza de paquetes perdidos y retransmitidos alcanza un determinado nivel, el efecto en el rendimiento de la red puede ser devastador.

-         Los paquetes deben ser almacenados en nodos anteriores a los sobrecargados, hasta que la congestión se reduzca. Esto incrementará los recargos de paquetes, pero no degradará el rendimiento de la red.
-         En el control de la congestión se agrupan las técnicas que se diseñan para controlar este aspecto. Esto se consigue informando a los nodos a lo largo de la ruta donde se ha producido la congestión y donde debería reducirse su taza de trasmisión de paquetes. Para los nodos intermedios, esto implicará almacenamiento de paquetes entrantes en cada búfer por un largo período. Para los hosts que son fuente de paquetes, el resultado podría ser que los paquetes sean colocados en colas antes de su transmisión, o bloqueados por procesos que lo generan hasta que la red pueda admitir los paquetes.
-         Las capas de red basadas en datagramas basan el control del tráfico en método de extremo a extremo. El nodo emisor debe reducir las tazas a la que transmite los paquetes basándose el la información que recibe el nodo receptor. La información sobre la congestión es enviada al nodo emisor mediante la transmisión explicita de paquetes especiales (paquetes de estrangulamiento) que solicitan una reducción el la taza de transmisión o mediante la implementación de un protocolo de control de la transmisión específico, o por la observación de ocurrencias de perdidas de paquetes (si el protocolo es uno de aquellos en el que cada paquete es reconocido).
En circuitos virtuales, la información sobre la congestión puede recibirse en todos los nodos, cada uno actuara en consecuencia.


INTERCONEXIÓN DE REDES

Para construir una red integrada (una interred) de debe integrar muchas subredes, cada una de las cuales se basa en una tecnología de red. Par hacerlo se necesita:

-         Un esquema de direccionamiento unificado que posibilite que los paquetes sean dirigidos a cualquier hosts conectado en cualquier subred.
-         Un protocolo que defina el formato de paquetes interred y las reglas según las cuales serán gestionados.
-          Componentes de interconexión que encaminen paquetes hacia su destino en términos de dirección interred, transmitiendo los paquetes utilizando subredes con tecnología de red variada.

Funciones de componentes que se usa para conectar a las redes:

·        ROUTERS: en una interred los routers pueden enlazarse mediante conexiones directas o pueden estar interconectados a través  de subredes. Ellos son los responsables de reenviar paquetes de interred  que llegan hacia las conexiones salientes correctas para lo cual se mantienen las tablas de encaminamiento.
·        PUENTES (bridges): enlazan redes de distintos tipos. Algunos puentes comunican varias redes y se llama puente/ruters ya que efectúan funciones de encaminamiento.
·        CONCENTRADORES (hubs): modo para conectar hosts y extender los segmentos de redes locales de difusión. Tienen (entre 4 y 64) conectores a los que conecta hosts. También son utilizados para eludir limitaciones de distancia en un único segmento y proporcionar un modo de añadir hosts adicionales,
·        CONMUTADORES (switch): función similar a un routers, pero restringida a redes locales. La ventaja de estos sobre los concentradores es que pueden separar el tráfico entrante y transmitirlo solo hacia la red de salida relevante, reduciendo la congestión con otras redes a las que estas conectados.
·        TUNELES: los puentes y routers transmiten paquetes de interred sobre una variedad de redes subyacentes, pero se da una situación en la cual el protocolo de red puede quedar oculto para los protocolos superiores sin tener que utilizar un protocolo especial de interred. Cuando un par de nodos conectados a dos redes separadas necesitan comunicarse a través de algún otro tipo de red o sobre un protocolo extraño, pueden hacerlo construyendo un protocolo enterrado o de túnel (tunnelling).

Un protocolo tunen es una capa de software que transmite paquetes a través de un entorno de red extraño.


PROTOCOLOS INTERNET


Internet surgió después de dos décadas de investigación y desarrollo de redes de área amplia en los Estados Unidos, comenzando en los primeros años setenta con ARPANET, la primera red de computadoras a gran escala desarrollada. Una parte importante de esa investigación fue el desarrollo del conjunto de protocolos TCP/IP. TCP es el acrónimo de Transmisión Control Protocol (protocolo de control de la transmisión), e IP se refiere a Internet Protocol (protocolo de Internet.
Servicios de aplicación y protocolos de nivel de aplicación basados en TCP/IP, incluyendo el Web (http), el correo electrónico(SMTP,POP), las redes de noticias (TNP), la transferencia de archivos (FTP), y la conexión remota (TELNET). TCP es un protocolo de transporte; puede ser utilizado para soportar aplicaciones directamente sobre él, o se le puede superponer capas adicionales de protocolos para proporcionar características adicionales (el protocolo Secure Sockerts Layer (SSL) es para conseguir canales seguros sobre los que enviar los mensajes http).
Existen dos protocolos de transporte, TCP (Transport Control Protocol) y UDP (User Datagram Protocol). TCP es un protocolo fiable orientado a conexión, mientras que UDP es un protocolo de datagramas que no garantiza fiabilidad en la transmisión. El protocolo Interred IP (Internet Protocol) es el protocolo de red subyacente de la red virtual Internet; esto es, los datagramas proporcionan un mecanismo de trasmisión básico para Internet y otras redes TCP/IP.
Ethernet proporciona una capa de red física que posibilita que los computadores conectados a la misma red intercambien datagramas.
IP se encuentra implementado sobre líneas serie y circuitos telefónicos vía el protocolo PPP, haciendo posible su utilización en las comunicaciones con módem y otros enlaces serie.
El éxito de TCP/IP se basa en su independencia de la tecnología de transmisión subyacente, haciendo posible construir interredes a partir de varias redes y enlaces de datos heterogéneos.
Los usuarios y los programas de aplicación perciben una única red virtual que soporta TCP y UDP, y los constructores de TCP y UDP ven una única red IP virtual, ocultando la diversidad de medios de transmisión.

DIRECCIONAMIENTO IP


El esquema utilizado debería satisfacer los siguientes requisitos:
  • Debería ser universal.
  • Debería ser eficiente en el uso del espacio de direccionamiento.
  • El esquema de direccionamiento debe conducir por sí mismo al desarrollo de un esquema de encaminamiento flexible y eficiente.


El esquema elegido asigna una dirección IP a cada host en Internet: un número de 32 bits formado por un identificador de red, que identifica de forma única a una de las subredes de Internet, y por un identificador de host, que identifica de manera única al host conectado a esa subred; escritos como una secuencia de cuatro números decimales separados por puntos. Cada número representa uno de los cuatro bytes u octetos de la dirección IP. Esta dirección se coloca en los paquetes IP y se utiliza para encaminarlos al destino.
Existen cuatro clases de direcciones Internet: A, B, C y D. La clase D se reserva para las comunicaciones de multidifusión, que se implementa sólo sobre algunos routers. La clase E contiene un rango de direcciones no asignadas, que están reservadas para usos futuros.

Se diseñaron tres clases de direcciones par satisfacer los requisitos de los distintos tipos de organizaciones. Las direcciones de Clase A, están reservadas para grandes redes como la norteamericana NSFNet y otras redes nacionales de área amplia. Las de Clase B, se reservan para organizaciones que gestionan redes con más de 255 computadores; y las direcciones de Clase C se dedican al resto de redes.
Los indicadores de red son asignados a las organizaciones con redes conectadas a Internet por el Internet Network Information Center (NIC). Los identificadores de host para los computadores de cada red conectado a Internet son asignados por el administrador de la red en cuestión. Dado que las direcciones de host incluyen un identificador de red, cualquier computador que esté conectado a más de una red debe tener una dirección de red para cada una de ellas, y siempre que un computador se mueva a una red diferente, debe cambiar su dirección Internet.
Problema: El administrador de la red no puede predecir el crecimiento futuro de sus necesidades de direcciones de host, por ello se tomaron dos decisiones:
1.- La primera fue el inicio del desarrollo de un nuevo protocolo IP y un nuevo esquema.
2.- La segunda fue modificar el modo en que eran reservadas la direcciones IP.
· El uso del espacio de direcciones IP se volvió más efectivo con un nuevo esquema de reservas y de encaminamiento llamado encaminamiento interdominio sin clases.
Los routers gestionan la entrega de los paquetes IP a todas las subredes. También manejan el tráfico entre las subredes y desde las subredes hacia el resto del mundo.

EL PROTOCOLO IP


El protocolo IP es el encargado de transmitir datagramas (paquetes) desde un host a otro, si fuera necesario, vía routers intermediarios.
IP proporciona un servicio de entrega que se puede describir como no fiable o como el mejor posible, porque no existe garantía de entrega. Los paquetes se pueden perder, ser duplicados, sufrir retrasos o ser entregados en un orden distinto al original, pero esos errores surgen sólo cuando las redes subyacentes fallan a cuando los búferes en el destino están llenos. La única comprobación de errores realizada por IP es la suma de comprobación (checksum), de la cabecera, que es asequible de calcular y asegura que no se han detectado alteraciones en los datos bien de direccionamiento o bien de gestión del paquete.
La capa IP coloca los datagramas IP en paquetes de red adecuados para ser transmitidos por la red subyacente. Cuando un datagrama IP es mayor que la MTU de la red subyacente, se divide en el origen en paquetes más pequeños y se reensamblan en su destino final. Cada paquete tiene un identificador de fragmento que hace posible el ensamblado de los paquetes que llegan desordenados.
La capa IP debe insertar una dirección física de red del destino del mensaje antes de confiárselo a la capa inferior. Esa dirección la obtiene del módulo de resolución de direcciones en la capa de Interfaz de Red Internet.
Resolución de direcciones. El módulo de resolución de direcciones es el responsable de la conversión de las direcciones Internet a direcciones de la red, para una red subyacente dada.
La traducción es dependiente de la tecnología de red utilizada:
  • Algunos hosts están conectados directamente a conmutadores de paquetes Internet.
  • Algunas redes de área local permiten que las direcciones de red sean asignadas a los hosts de forma dinámica, y las direcciones pueden ser elegidas de manera que coincidan con la porción del identificador del host de la dirección Internet.
  • Para las redes Ethernet, y para algunas otras redes locales, las direcciones de red de cada computador son establecidas por métodos hardware en las interfaces de red y no guardan ninguna relación con su dirección Internet.

IP truncado. Cuando se generan muchas solicitudes de servicio simple ping a un gran número de computadores situados en varios sitios (ping es un servicio simple diseñado para comprobar la disponibilidad de un host). Todas estas solicitudes ping maliciosas contenían en el campo de direcciones del emisor la dirección IP del computador objetivo. Las respuestas al ping fueron, por lo tanto , dirigidas contra el objetivo, cuyos búferes de entrada fueron sobrecargados, impidiendo que cualquier paquete IP legítimo pudiera llegar a ellos.

ENCADENAMIENTO IP

La capa IP encamina paquetes desde su origen hasta su destino. Cada router en Internet implementa la capa de software IP para proporcionar un algoritmo de encaminamiento.
Conexiones troncales. La topología de Internet está dividida conceptualmente en sistemas autónomos(AS), que están divididos a su vez en áreas. Cada AS representado en el mapa topológico tiene un área troncal. La colección de routers que conectan las áreas no troncales con la troncal y los enlaces que interconectan esos routers se conocen como la conexión troncal o la columna dorsal de la red.
Protocolos de encaminamiento. Los algoritmos de encaminamiento  utilizados en Internet son:
RIP-1: Algoritmo de vector de distancias.
RIP-2: Algoritmo que incluye el encaminamiento entre dominios sin clases, un mejor encaminamiento multidifusión y la necesidad de autenticar los paquetes RIP para prevenir ataques a los routers. El algoritmo OSPF está basado en un algoritmo de búsqueda de caminos de Dijktra.
Un cambio en el algoritmo de encaminamiento implica una nueva versión del protocolo RIP. El protocolo IP no cambia cuando se introduce un nuevo protocolo RIP. Cualquier router RIP encaminará correctamente los paquetes que le lleguen  por una ruta, si no óptima, si razonable, independientemente de la versión de RIP que utilice.
Dentro de cada área se aplica un único algoritmo de encaminamiento y los routers dentro de un área cooperan para mantener las tablas de encaminamiento.
Routers por defecto. Los algoritmos de encaminamiento ha hecho suponer que cada router mantiene una tabla de encaminamiento completa mostrando la ruta a cualquier destino en Internet. A la escala actual de Internet esto claramente imposible.
Dos posibles soluciones: la primera es adoptar alguna forma de agrupamiento topológico de las direcciones IP. La segunda es la precisión de la información de encaminamiento puede ser escasa en la mayoría de los routers, siempre que algunos routers clave (aquellos más cercanos a los enlaces troncales) tengan unas tablas de encaminamiento relativamente completas. El esquema de encaminamiento por defecto es ampliamente utilizado en Internet; ningún router almacena las rutas para todos los destinos en Internet.
Encaminamiento en subredes locales. Los paquetes dirigidos a la misma red del emisor se transmite al destino en un único salto, utilizando la parte del identificador del host de la dirección para obtener la dirección del host destino en la red subyacente. La capa IP utiliza ARP para conseguir la dirección de red del destino y entonces encomienda a la red subyacente la transmisión de los paquetes.
Si la capa IP del emisor descubre que el destino está en una red diferente, debe enviar el mensaje al router local. Utiliza ARP para conseguir la dirección de red de la pasarela o del router y la utiliza para que la red subyacente transmita el paquete. Las pasarelas y routers están conectados a dos a más redes y tienen varias direcciones Internet, una para cada red a la que están conectados.
Encaminamiento interdominio sin clase (CIDR). El principal problema era la escasez de direcciones de la Clase B, aquéllas para las subredes con más de 255 host conectados, mientras que se encontraban disponibles muchas de las direcciones de la Clase C. La solución CIDR es reservar un bloque de direcciones C contiguas para aquellas subredes que necesitaban más de 255 direcciones. El esquema CIDR también hacía posible la división del espacio de una dirección de Clase B en múltiples subredes.
El cambio adoptado fue añadir un campo de máscara a las tablas de encaminamiento. La máscara es un patrón de bits utilizado para seleccionar la porción de las direcciones IP que será host/subred ocupen cualquier parte de la dirección IP, proporcionando más flexibilidad que las clases A, B y C. De ahí el nombre de encaminamiento en

seccion608@gmail.com